Periodic pinning image


Superconducting vortices and artificial pinning

The distribution and microscopic properties of pinning centers can qualitatively influence the thermodynamic and vortex transport properties of the superconducting sample. For example, one of the most important characteristics of a type-II superconductor, the value of the critical current, is determined by the balance of Lorentz forces and pinning forces acting on the flux lines. The Lorentz force is proportional to the transport current, and tends to drive the flux lines into motion, leading to the dissipation of energy and destroying the zero resistance state. Pinning forces created by isolated defects in the material oppose the motion of the flux lines and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase the critical current, ranging from the dispersal of small non-superconducting second phases to creation of defects by proton, neutron, or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. A novel approach to the problem came with advances in lithography, which allowed for regular structuring and modulation of the sample properties over a large surface area. Long-range correlation in the position of the pinning centers resulted in the interplay between the length scales characterizing the pin lattice and the vortex lattice. These commensuration effects lead to a rich structure in the field dependence of the critical current, and a wide variety of new dynamical states.

Papers:

  1. Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays
    C.J.O. Reichhardt and C. Reichhardt
    Eur. Phys. J. B 95, 135 (2022). arXiv


  2. Active rheology and anti-commensuration effects for driven probe particles on two dimensional periodic pinning substrates
    C.J.O. Reichhardt and C. Reichhardt
    Phys. Rev. Res. 4, 013190 (2022). arXiv


  3. Vortex dynamics, pinning, and angle-dependent motion on moire patterns
    W. Li, C.J.O. Reichhardt, B. Janko, and C. Reichhardt
    Phys. Rev. B 104, 024504 (2021). arXiv


  4. Vortex guidance and transport in channeled pinning arrays
    C. Reichhardt and C.J.O. Reichhardt
    Low Temp. Phys. 46, 309 (2020). arXiv


  5. Braiding Majorana fermions and creating quantum logic gates with vortices on a periodic pinning structure
    X. Ma, C.J.O. Reichhardt, and C. Reichhardt
    Phys. Rev. B 101, 024514 (2020). arXiv


  6. Vortex shear banding transitions in superconductors with inhomogeneous pinning arrays
    C. Reichhardt and C.J.O. Reichhardt
    J. Phys. Commun. 3, 125009 (2019) arXiv


  7. Manipulation of individual superconducting vortices and stick-slip motion in periodic pinning arrays
    X. Ma, C.J.O. Reichhardt, and C. Reichhardt
    Phys. Rev. B 97, 214521 (2018). arXiv

  8. Enhanced pinning for vortices in hyperuniform substrates and emergent hyperuniform vortex states
    Q. Le Thien, D. McDermott, C.J. Olson Reichhardt, and C. Reichhardt
    Phys. Rev. B 96, 094516 (2017). arXiv

  9. Orientational ordering, buckling, and dynamic transitions for vortices interacting with a periodic quasi-one dimensional substrate
    Q. Le Thien, D. McDermott, C.J. Olson Reichhardt, and C. Reichhardt
    Phys. Rev. B 93, 0145014 (2016). arXiv

  10. Pinning, ordering, and dynamics of vortices in conformal crystal and gradient pinning arrays
    D. Ray, C. Reichhardt, and C.J. Olson Reichhardt
    Phys. Rev. B 90, 094502 (2014). arXiv


  11. Vortex transport and pinning in conformal pinning arrays
    D. Ray, C. Reichhardt, C.J. Olson Reichhardt, and B. Janko
    Physica C 503, 123 (2014). arXiv


  12. Vortex states in Archimedean tiling pinning arrays
    D. Ray, C. Reichhardt, and C.J. Olson Reichhardt
    Supercond. Sci. Technol. 27, 075006 (2014). arXiv


  13. Strongly enhanced pinning of magnetic vortices in type-II superconductors by conformal crystal arrays
    D. Ray, C.J. Olson Reichhardt, B. Janko, and C. Reichhardt
    Phys. Rev. Lett. 110, 267001 (2013). arXiv


  14. Vortex dynamics and symmetry locking on quasiperiodic and periodic substrates
    C.J. Olson Reichhardt and C. Reichhardt
    Physica C 479, 45 (2012).


  15. Structural transitions and dynamical regimes for directional locking of vortices and colloids driven over periodic substrates
    C. Reichhardt and C.J. Olson Reichhardt
    J. Phys.: Condens. Matter 24, 225702 (2012). arXiv


  16. Dynamical ordering and directional locking for particles moving over quasicrystalline substrates
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. Lett. 106, 060603 (2011). arXiv


  17. Commensurability, jamming, and dynamics for vortices in funnel geometries
    C.J. Olson Reichhardt and C. Reichhardt
    Phys. Rev. B 81, 224516 (2010). arXiv


  18. Shear banding and spatiotemporal oscillations in vortex matter in nanostructured superconductors
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B Rapid Communications 81, 100506(R) (2010). arXiv


  19. Switching and jamming transistor effect for vortex matter in honeycomb pinning arrays with ac drives
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B 81, 024510 (2010). arXiv


  20. Driving an individual vortex in the presence of a periodic pinning array
    C.J. Olson Reichhardt and C. Reichhardt
    Physica C 470, 779 (2010).


  21. Coherent and incoherent vortex flow states in crossed channels
    C.J. Olson Reichhardt and C. Reichhardt
    EPL 88, 47004 (2009). arXiv


  22. Transport anisotropy as a probe of the interstitial vortex state in superconductors with artificial pinning
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B 79, 134501 (2009). arXiv


  23. Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B 78, 224511 (2008). arXiv


  24. Transverse commensurability effect for vortices in periodic pinning arrays
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B Rapid Communications 78, 180507(R) (2008). arXiv


  25. Spontaneous transverse response and amplified switching in superconductors with honeycomb pinning arrays
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. Lett. 100, 167002 (2008). arXiv


  26. Commensurability effects at nonmatching fields for vortices in diluted periodic pinning arrays
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B 76, 094512 (2007). arXiv


  27. Vortex molecular crystal and vortex plastic crystal states in honeycomb and kagome pinning arrays
    C. Reichhardt and C.J. Olson Reichhardt
    Phys. Rev. B 76, 064523 (2007). arXiv


  28. Vortex configurations and dynamics in elliptical pinning sites for high matching fields
    C.J. Olson Reichhardt, A. Libal, and C. Reichhardt
    Phys. Rev. B 73, 184519 (2006). arXiv


  29. Transverse phase locking for vortex motion in square and triangular pinning arrays
    C. Reichhardt and C.J. Olson
    Phys. Rev. B 65, 174523 (2002). arXiv


  30. Vortex pinball under crossed ac drives in superconductors with periodic pinning arrays
    C. Reichhardt and C.J. Olson
    Phys. Rev. B 65, 100501(R) (2002). arXiv


  31. Commensurate and incommensurate vortex lattice melting in periodic pinning arrays
    C. Reichhardt, C.J. Olson, R.T. Scalettar, and G.T. Zimanyi
    Phys. Rev. B 64, 144509 (2001).


  32. Nonequilibrium dynamic phases and plastic flow of driven vortex lattices in superconductors with periodic arrays of pinning sites
    C. Reichhardt, C.J. Olson, and F. Nori
    Phys. Rev. B 58, 6534 (1998).


  33. Commensurate and incommensurate vortex states in superconductors with periodic pinning arrays
    C. Reichhardt, C.J. Olson, and F. Nori
    Phys. Rev. B 57, 7937 (1998). arXiv


  34. Dynamic phases of vortices in superconductors with periodic pinning
    C. Reichhardt, C.J. Olson, and F. Nori
    Phys. Rev. Lett. 78, 2648 (1997). arXiv


  35. Spatiotemporal dynamics and plastic flow in superconductors with periodic arrays of pinning sites
    C. Reichhardt, J. Groth, C.J. Olson, S.B. Field, and F. Nori
    Phys. Rev. B 54, 16108 (1996). arXiv


  36. Vortex plastic flow, local flux density, magnetization hysteresis loops, and critical current, deep in the Bose-glass and Mott-insulator regimes
    C. Reichhardt, C.J. Olson, J. Groth, S. Field, and F. Nori
    Phys. Rev. B 53, R8898 (1996). arXiv

Last modified May 3, 2018