Skyrmions in chiral magnets
Skyrmions are nanoscale particlelike magnetic textures discovered in chiral magnets in 2009. Since that time the field has shown tremendous growth, with the identification of more and more skyrmion-supporting materials and the development of additional experimental techniques capable of directly accessing the skyrmion dynamics. Skyrmions represent an example of a collectively interacting system of particles that can exhibit depinning and sliding phenomena, but unlike other such systems, due to the skyrmion topology a Magnus term plays a strong role in the skyrmion dynamics. Numerous recent theoretical and experimental papers have demonstrated that this Magnus term strongly affects the skyrmion motion and the interactions of the skyrmions with quenched disorder or pinning. We explore the rich dynamics that emerge in this novel system.
Preprints:
-
Asymmetric diffusion of chiral skyrmions
X. Zhang, C. Reichhardt, C.J.O. Reichhardt, Y. Zhou, Y. Xu, and M. Mochizuki
Brownian dynamics of chiral matter in chiral environment may give rise to emergent phenomena that could not be observed in achiral environment. Here, we report the asymmetric diffusion of chiral skyrmions in two chambers separated by a chiral gate. The topology-determined Brownian gyromotion of skyrmions could lead to effective interactions between skyrmions and chamber walls with a sense of clockwise or counter-clockwise rotation. By fabricating a chiral gate separating two chambers, skyrmions could demonstrate asymmetric diffusion through the gate to approach a nonequilibrium state before reaching the thermal equilibrium. We focus on the asymmetric diffusion of skyrmions that depends on the gate chirality and opening width. Although the simulated diffusion of skyrmions is affected by the skyrmion density, which varies with time due to the diffusion and annihilation, the simulated outcomes are generally in line with simple theories assuming time-independent diffusion rates. Our results uncover asymmetric diffusive behaviors of chiral skyrmions interacting with chiral nanostructures, which will appeal to the wide audience interested in hard condensed matter systems, magnetism, active matter, and statistical physics.
arXiv
-
Ordered and disordered skyrmion states on a square substrate
J.C. Bellizotti Souza, C.J.O. Reichhardt, C. Reichhardt, N.P. Vizarim, and P.A. Venegas
arXiv
We examine the ordering of skyrmions interacting with a square substrate created from a modulation of anisotropy using atomistic simulations. We consider fillings of f = 1.5, 2.0, 2.5, 3.0, and 3.5 skyrmions per potential minimum as a function of magnetic field and sample size. For a filling of f = 2.0, we find various dimer orderings, such as tilted dimer states, as well as antiferromagnetic ordering that is similar to the colloidal dimer ordering seen on square substrates. The ability of the skyrmions to change shape or annihilate produces additional states that do not occur in the colloidal systems. For certain parameters at f = 2.0, half of the skyrmions can annihilate to form a square lattice, or a superlattice of trimers and monomers containing skyrmions of different sizes can form. At lower fields, ordered stretched skyrmion states can appear, and for zero field, there can be ordered stripe states. For f = 3.0, we find ferromagnetic ordered trimers, tilted lattices, columnar lattices, and stretched phases. For fillings of f = 1.5 and 2.5, we find bipartite lattices, different ordered and disordered states, and several extended disordered regions produced by frustration effects.
Papers:
-
Sliding dynamics of skyrmion molecular crystals
J.C. Bellizotti Souza, C.J.O. Reichhardt, C. Reichhardt, N.P. Vizarim, and P.A. Venegas
J. Phys.: Condens. Matter, in press (2025)
arXiv
-
Skyrmion-skyrmionium phase separation and laning transitions via spin-orbit torque currents
N.P. Vizarim, J.C. Bellizotti Souza, C.J.O. Reichhardt, C. Reichhardt, P.A. Venegas, and F. Beron
Phys. Rev. B, in press (2025).
arXiv
-
Topological transitions, pinning and ratchets for driven magnetic hopfions in nanostructures
J.C. Bellizotti Souza, C.J.O. Reichhardt, C. Reichhardt, A. Saxena, N.P. Vizarim, and P.A. Venegas
Sci. Rep. 15, 16802 (2025).
arXiv
-
Skyrmionium dynamics and stability on one dimensional anisotropy patterns
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
J. Phys.: Condens. Matt. 37, 195802 (2025).
arXiv
-
Comparing dynamics, pinning and ratchet effects for skyrmionium, skyrmions, and antiskyrmions
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
J. Phys.: Condens. Matt. 37, 165801 (2025).
arXiv
-
Skyrmion soliton motion on periodic substrates by atomistic and particle based simulations
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
EPL 148, 56002 (2024).
arXiv
-
Reversible to irreversible transitions for ac driven skyrmions on periodic substrates
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
New J. Phys. 26, 113007 (2024).
arXiv
-
Skyrmion molecular crystals and superlattices on triangular substrates
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, P.A. Venegas, and C. Reichhardt
Phys. Rev. B 111, 054402 (2025).
arXiv
-
Shapiro steps and stability of skyrmions interacting with alternating anisotropy under the influence of ac and dc drives
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
Phys. Rev. B 110, 014406 (2024).
arXiv
-
Controlled skyrmion ratchet in linear protrusion defects
F.S. Rocha, J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
Phys. Rev. B 109, 054407 (2024).
arXiv
-
Skyrmion transport and annihilation in funnel geometries
F.S. Rocha, J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
J. Phys.: Condens. Matter 36, 115801 (2024).
arXiv
-
Soliton motion induced along ferromagnetic skyrmion chains in chiral thin nanotracks
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
J. Mag. Mag. Mater. 587, 171280 (2023).
arXiv
-
Kibble-Zurek scenario and coarsening across nonequilibrium phase transitions in driven vortices and skyrmions
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. Res. 5, 033221 (2023).
arXiv
-
Peak effect, melting, and transport in skyrmion crystals
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. B 108, 014428 (2023).
arXiv
-
Spontaneous skyrmion conformal lattice and transverse motion during dc and ac compression
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
New J. Phys. 25, 053020 (2023).
arXiv
-
Magnus induced diode effect for skyrmions in channels with periodic potentials
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
J. Phys.: Condens. Matter 51, 015804 (2022).
arXiv
-
Editorial: Generation, detection and manipulation of skyrmions in magnetic nanostructures
H.Y. Yuan, X. Zhang, and C.J.O. Reichhardt
Front. Phys. 10, 964975 (2022).
-
Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays
C.J.O. Reichhardt and C. Reichhardt
Eur. Phys. J. B 95, 135 (2022).
arXiv
-
Clogging, diode and collective effects of skyrmions in funnel geometries
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
New J. Phys. 24, 103030 (2022).
arXiv
-
Statics and dynamics of skyrmions interacting with disorder and nanostructures
C. Reichhardt, C.J.O. Reichhardt, and M.V. Milosevic
Rev. Mod. Phys. 94, 035005 (2022).
arXiv
-
Commensuration effects on skyrmion Hall angle and drag for manipulation
of skyrmions on two-dimensional periodic substrates
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. B 105, 214437 (2022).
arXiv
-
Soliton motion in skyrmion chains: Stabilization and guidance by nanoengineered pinning
N.P. Vizarim, J.C. Bellizotti Souza, C.J.O. Reichhardt, C. Reichhardt, M.V. Milosevic, and P.A. Venegas
Phys. Rev. B 105, 224409 (2022).
arXiv
-
Directed motion of liquid crystal skyrmions with oscillating fields
A. Duzgun, C. Nisoli, C.J.O. Reichhardt, and C. Reichhardt
New J. Phys. 24, 033033 (2022).
arXiv
-
Fluctuations and pinning for individually manipulated skyrmions
C.J.O. Reichhardt and C. Reichhardt
Front. Phys. 9, 767491 (2021).
arXiv
-
Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices
A.K.C. Tan, P. Ho, J. Lourembam, L. Huang, H.K. Tan, C.J.O. Reichhardt, C. Reichhardt, and A. Soumyanarayan
Nature Commun. 12, 4252 (2021).
arXiv
-
Dynamics and nonmonotonic drag for individually driven skyrmions
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. B 104, 064441 (2021).
arXiv
-
Skyrmion ratchet in funnel geometries
J.C. Bellizotti Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, and P.A. Venegas
Phys. Rev. B 104, 054434 (2021).
arXiv
-
Directional locking and the influence of obstacle density on skyrmion dynamics in triangular and honeycomb arrays
N.P. Vizarim, J.C. Bellizotti Souza, C. Reichhardt, C.J.O. Reichhardt, and P.A. Venegas
J. Phys.: Condens. Matter 33, 305801 (2021).
arXiv
-
Guided skyrmion motion along pinning array interfaces
N.P. Vizarim, C. Reichhardt, P.A. Venegas, and C.J.O. Reichhardt
J. Mag. Mag. Mater. 528, 167710 (2021).
arXiv
-
Skyrmion pinball and directed motion on obstacle arrays
N.P. Vizarim, C.J.O. Reichhardt, P.A. Venegas, and C. Reichhardt
J. Phys. Commun. 4, 085001 (2020).
arXiv
-
Shapiro steps and nonlinear skyrmion Hall angles for dc and ac driven skyrmions on a two dimensional periodic substrate
N.P. Vizarim, C. Reichhardt, P.A. Venegas, and C.J.O. Reichhardt
Phys. Rev. B 102, 104413 (2020).
arXiv
-
Skyrmion dynamics and transverse mobility: Skyrmion Hall angle reversal on 2D periodic substrates with dc and biharmonic ac drives
N.P. Vizarim, C.J.O. Reichhardt, P.A. Venegas, and C. Reichhardt
Eur. Phys. J. B 93, 112 (2020)
arXiv
-
Dynamics of Magnus dominated particle clusters, collisions, pinning and ratchets
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. E 101, 062602 (2020).
arXiv
-
Skyrmion dynamics and topological sorting on periodic obstacle arrays
N.P. Vizarim, C. Reichhardt, C.J.O. Reichhardt, and P.A. Venegas
New J. Phys. 22, 053025 (2020).
arXiv
-
Commensurate states and pattern switching via liquid crystal skyrmions trapped in a square lattice
A. Duzgun, C. Nisoli, C.J.O. Reichhardt, and C. Reichhardt
Soft Matter 16, 3338 (2020).
arXiv
-
Shear banding, intermittency, jamming and dynamic phases for skyrmions in inhomogeneous pinning arrays
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. B 101, 054423 (2020).
arXiv
-
Chiral edge currents for ac driven skyrmions in confined pinning geometries
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. B 100, 174414 (2019).
arXiv
-
Reentrant pinning, dynamic row reduction, and skyrmion accumulation
for driven skyrmions in inhomogeneous pinning arrays
C. Reichhardt and C.J.O. Reichhardt
EPL 129, 21001 (2020).
arXiv
-
Nonlinear transport, dynamic ordering, and clustering for driven skyrmions on random pinning
C. Reichhardt and C.J.O. Reichhardt
Phys. Rev. B 99, 104418 (2019).
arXiv
-
Skyrmions in anisotropic magnetic fields: Strain and defect dynamics
R. Brearton, M.W. Olszewski, S. Zhang, M.R. Eskildsen, C. Reichhardt, C.J.O. Reichhardt, G. van der Laan, and T. Hesjedal
MRS Adv. 4, 643 (2019).
-
Disordering, clustering, and laning transitions in particle systems with dispersion in the Magnus term
C.J.O. Reichhardt and C. Reichhardt
Phys. Rev. E 99, 012606 (2019). arXiv
-
Reversible to irreversible transitions in periodically driven skyrmion systems
B.L. Brown, C. Reichhardt, and C.J.O. Reichhardt
New J. Phys. 21, 013001 (2019). arXiv
-
Thermal creep and the skyrmion Hall angle in driven skyrmion crystals
C. Reichhardt and C.J.O. Reichhardt
J. Phys.: Condens. Matter 31, 07LT01 (2019). arXiv
-
Nonequilibrium phases and segregation for skyrmions on periodic pinning arrays
C. Reichhardt, D. Ray, and C.J.O. Reichhardt
Phys. Rev. B 98, 134418 (2018). arXiv
-
Avalanches and criticality in driven magnetic skyrmions
S.A. Diaz, C. Reichhardt, D.P. Arovas, A. Saxena, and C.J.O. Reichhardt
Phys. Rev. Lett. 120, 117203 (2018). arXiv
-
Fluctuations and noise signatures of driven magnetic skyrmions
S.A. Diaz, C.J.O. Reichhardt, D.P. Arovas, A. Saxena, and C. Reichhardt
Phys. Rev. B 96, 085106 (2017). arXiv
-
Reversible vector ratchets for skyrmion systems
X. Ma, C.J. Olson Reichhardt, and C. Reichhardt
Phys. Rev. B 95, 104401 (2017). arXiv
-
Shapiro spikes and negative mobility for skyrmion motion on
quasi-one-dimensional periodic substrates
C. Reichhardt and C.J. Olson Reichhardt
Phys. Rev. B 95, 014412 (2017). arXiv
-
Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems
C. Reichhardt and C.J. Olson Reichhardt
New J. Phys. 18, 095005 (2016). arXiv
-
Emergent geometric frustration of artificial magnetic skyrmion crystals
F. Ma, C. Reichhardt, W. Gan, C.J. Olson Reichhardt, and W.S. Lew
Phys. Rev. B 94, 144405 (2016) arXiv
-
Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional
periodic substrate
C. Reichhardt and C.J. Olson Reichhardt
Phys. Rev. B 94, 094413 (2016). arXiv
-
Shapiro steps for skyrmion motion on a washboard potential with
longitudinal and transverse ac drives
C. Reichhardt and C.J. Olson Reichhardt
Phys. Rev. B 92, 224432 (2015). arXiv
-
Magnus-induced ratchet effects for skyrmions interacting with
asymmetric substrates
C. Reichhardt, D. Ray, and C.J. Olson Reichhardt
New J. Phys. 17, 073034 (2015). arXiv
-
Quantized transport for a skyrmion moving on a two-dimensional
periodic substrate
C. Reichhardt, D. Ray, and C.J. Olson Reichhardt
Phys. Rev. B 91, 104426 (2015). arXiv
-
Collective transport properties of driven skyrmions with random disorder
C. Reichhardt, D. Ray, and C.J. Olson Reichhardt
Phys. Rev. Lett. 114, 217202 (2015). arXiv
-
Comparing the dynamics of skyrmions and superconducting vortices
C.J. Olson Reichhardt, S.Z. Lin, D. Ray, and C. Reichhardt
Physica C 503, 52 (2014). arXiv
Last modified Jan 7, 2019