Artificial Ice
Artificial spin ice systems have been attracting increasing interest
as frameworks for studying frustration or degeneracy.
First realized using nanoscale magnets arranged in square or hexagonal
geometries, artificial ices have been proposed and experimentally
realized in a wide
range of hard and soft matter systems, including superconducting vortices
in artificial pinning sites and colloidal particles in either optical traps or
gravitational potential arrays.
In these systems, various types of ordering and frutstration effects can be
readily tuned and the microscopic degrees of freedom of the artificial spins
can be accessed directly.
Papers:
-
Vortex ordering and dynamics on Santa Fe artificial ice pinning arrays
W. Li, C.J.O. Reichhardt, B. Janko, and C. Reichhardt
Appl. Phys. Lett. 118, 162601 (2021).
arXiv
-
Quenched dynamics of artificial spin ice: Coarsening versus Kibble-Zurek
A. Libal, A. del Campo, C. Nisoli, C. Reichhardt, and C.J.O. Reichhardt
Phys. Rev. Research 2, 033433 (2020).
arXiv
-
Colloquium: Ice rule and emergent frustration in particle ice and beyond
A. Ortiz-Ambriz, C. Nisoli, C. Reichhardt, C.J.O. Reichhardt, and P. Tierno
Rev. Mod. Phys. 91, 041003 (2019).
arXiv
-
Ice rule fragility via topological charge transfer in artificial colloidal ice
A. Libal, D.-Y. Lee, A. Ortiz-Ambriz, C. Reichhardt, C.J.O. Reichhardt, P. Tierno,
and C. Nisoli
Nature Commun. 9, 4146 (2018). arXiv
-
Inner phases of colloidal hexagonal spin ice
H. Peter, A. Libal, C. Reichhardt, and C.J.O. Reichhardt
Phys. Rev. Lett. 120, 027204 (2018). arXiv
-
Dynamic control of topological defects in artificial colloidal ice
A. Libal, C. Nisoli, C. Reichhardt, and C.J. Olson Reichhardt
Sci. Rep. 7, 651 (2017). arXiv
-
Emergent geometric frustration of artificial magnetic skyrmion crystals
F. Ma, C. Reichhardt, W. Gan, C.J. Olson Reichhardt, and W.S. Lew
Phys. Rev. B 94, 144405 (2016) arXiv
-
Realizing artificial spin ice states for magnetic colloids on optical traps
A. Libal, C.M. Reichhardt, and C.J. Olson Reichhardt
Proc. SPIE 9931, Spintronics IX, 99311Q (2016).
-
Doped colloidal artificial spin ice
A. Libal, C. Reichhardt, and C.J. Olson Reichhardt
New J. Phys. 17, 103010 (2015) arXiv
-
Disordered artificial spin ices: Avalanches and criticality (invited)
C.J. Olson Reichhardt, G.-W. Chern, A. Libal, and C. Reichhardt
J. Appl. Phys. 117, 172612 (2015)
-
Avalanches and disorder-induced criticality in artificial spin ices
G.-W. Chern, C. Reichhardt, and C.J. Olson Reichhardt
New J. Phys. 16, 063051 (2014) arXiv
-
Frustrated colloidal ordering and fully packed loops in arrays of optical
traps
G.-W. Chern, C. Reichhardt, and C.J. Olson Reichhardt
Phys. Rev. E 87, 062305 (2013) arXiv
-
Hysteresis and return point memory in artificial spin ice systems
A. Libal, C. Reichhardt, and C.J. Olson Reichhardt
Phys. Rev. E 86, 021406 (2012) arXiv
-
Multi-step ordering in kagome and square artificial spin ice
C.J. Olson Reichhardt, A. Libal, and C. Reichhardt
New J. Phys. 14, 025006 (2012) arXiv
-
Topological defects from doping and disorder in artificial ice systems
C.J. Olson Reichhardt, C. Reichhardt, and A. Libal
IEEE Proc. 2010 Int. Conf. Electromagnetics Adv. Applications (ICEAA), p. 252 (2010)
-
Transport, hysteresis and avalanches in artificial spin ice systems
C. Reichhardt, C.J. Olson Reichhardt, and A. Libal
IEEE Proc. 2010 Int. Conf. Electromagnetics Adv. Applications (ICEAA), p. 260 (2010)
-
Creating artificial ice states using vortices in nanostructured superconductors
A. Libal, C.J. Olson Reichhardt, and C. Reichhardt
Phys. Rev. Lett. 102, 237004 (2009). arXiv
-
Realizing artificial ice in superconducting and colloidal systems
C.J. Olson Reichhardt, A. Libal, and C. Reichhardt
IEEE Proc. 2009 Int. Conf. Electromagnetics Adv. Applications (ICEAA), p. 604 (2009).
-
Realizing colloidal artificial ice on arrays of optical traps
A. Libal, C. Reichhardt, and C.J. Olson Reichhardt
Phys. Rev. Lett. 97, 228302 (2006). arXiv
Last modified May 2, 2018