Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, February 13, 2012
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Modeling Animal Transcription Networks as Highly Connected, Quantitative Continua

Mark Biggin
Lawrence Berkeley National Laboratory

To understand how transcription factors function, it is essential to determine the range of genes that they each bind and regulate in vivo and also to develop predictive, quantitative models for how these proteins generate complex spatial and temporal patterns of gene expression. We have established multiple, large scale datasets that measure key aspects of the transcription network that regulates early Drosophila embryogenesis. Analysis of these data show that most sequence specific transcription factors each bind to a majority of genes over a quantitative series of DNA occupancy levels. These continua span functional, quasi-functional, and non-functional DNA binding events. Factor regulatory specificities are distinguished by quantitative differences in DNA occupancy patterns. These results contrast with popular descriptions of transcription networks, which define discrete sets of direct target and non-target genes and thus do not capture the full complexity we have measured in vivo. In addition, we have built computational models that predict levels of in vivo DNA occupancy and 3D transcriptional output as a step towards a detailed biochemical understanding of transcription factor targeting and combinatorial control.

Host: Jeff Drocco, T-4 and CNLS