Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, January 12, 2009
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Single vesicle dynamics in a general flow

Victor Steinberg
Weizmann Institute

Dynamics of deformable mesoscopic objects under hydrodynamic stresses determine rheology of many complex fluids, such as emulsions, suspensions of droplets or bubbles, solutions of vesicles, blood, biological fluids, etc. From a theoretical point of view this non-equilibrium problem is rather challenging due to the coupling between micro-scales of the object deformations and macro-scales of the flow, where the object shape is not given a priori but determined by interplay between flow, bending energy, and various physical constraints. A vesicle is an example of such deformable objects. Dynamics of a single vesicle in a general flow is investigated experimentally. Phase diagram of three dynamical of a vesicle is obtained experimentally in both shear and general flows. The new control parameter, the ratio of the vorticity to the strain rate ω/s, allows following an experimental path, which scans across the whole phase diagram with a single vesicle. Surprisingly, all three states and transitions between them are obtained on the same vesicle and at the same viscosity of inner and outer fluids. We reveal the physical nature of the key dynamical state, coined by us trembling, which shows up in intrinsic shape instability on each cycle resulted in periodical bursting of higher order harmonics depending on the value of the control parameter proportional to ω/s. Depending on the value of this control parameter the regions with the dominated second, third, and higher harmonics in the trembling dynamics are identified. Agreement with theory is discussed.

Host: Misha Chertkov, T-4