Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Guoqing Zhou

Postdoctoral Research Associate
T-1/CNLS

Computational Quantum Chemistry and Machine Learning

Guoqing Zhou

Office: N/A
Mail Stop: N/A
Phone: N/A
Fax: N/A

guoqingz@lanl.gov
home page

Research highlight
    My work relates to incoporate quantum chemistry methods with machine learning. This includes multi-objective learning of molecular properties, developing methods on predicting self-consistent charge and excited state quantities.
  • Semiempirical Quantum Chemistry with PyTorch
 Educational Background/Employment:
  • Ph.D. (2020) Physics, University of Southern California, Los Angeles, USA
  • B.S. (2015) Physics, University of Science and Technology of China, Hefei, China
  • Employment:
    • 2021-Present: Postdoctoral Research Associate, Los Alamos National Laboratory

Research Interests:

  • Computational Quantum Chemistry
  • Machine Learning
  • Excited State Molecular Dynamics

Selected Recent Publications:

    Full publication list in Google Scholar
  1. Zhou, G., Nebgen, B., Lubbers, N., Malone, W., Niklasson, A.M., Tretiak, S.Graphics processing unit-accelerated semiempirical Born Oppenheimer molecular dynamics using PyTorch., Journal of Chemical Theory and Computation16.84951-4962 (2020).
  2. Zhou, G., Lu, G., Prezhdo, O.V.Modeling Auger Processes with Nonadiabatic Molecular Dynamics, Nano Letters21.1756-761 (2021).
  3. Xiong Y.*, Zhou G.*, Lai NC, Wang X, Lu YC, Prezhdo OV, Xu D.Chemically Switchable n-Type and p-Type Conduction in Bismuth Selenide Nanoribbons for Thermoelectric Energy Harvesting, ACS Nano15.22791-2799 (2021).
  4. Zhou, G., Chu W., Prezhdo, O.V.Structural Deformation Controls Charge Losses in MAPbI3: Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics, ACS Energy Letters5.61930-1938 (2020).
LANL Operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy