Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Agnese Marcato

CNLS Postdoctoral Research Associate
CNLS/EES-16

Machine learning for flow and reactive transport

Agnese Marcato

Office: TA-3, Bldg 1690, Room 136
Mail Stop: B258
Phone: (505) 416-1328
Fax: (505) 665-4055
Email: amarcato@lanl.gov
home page

Research highlight
 Educational Background/Employment:
  • (2019-2023) Ph.D. Chemical Engineering, Politecnico di Torino, Italy
  • (2017-2019) M.Sc. Chemical and Sustainable Processes engineering, Politecnico di Torino, Italy
  • (2014-2017) B.Sc. Chemical and Food Engineering, Politecnico di Torino, Italy
  • Employment:
    • (2024-present) Postdoctoral Resesarch Assiciate, Los Alamos National Laboratory, Los Alamos, NM, USA.

Research Interests:

  • Physics-informed machine learning
  • Differentiable programming
  • Computational Fluid Dynamics
  • Reactive transport in porous media
  • High-performance computing

Selected Recent Publications:

    1. Agnese Marcato, Daniel O'Malley, Hari Viswanathan, Eric Guiltinan, and Javier E. Santos, .Reconstruction of Fields from Sparse Sensing: Differentiable Sensor Placement Enhances Generalization. arXiv preprint arXiv:2312.09176 (2023).
    2. Jaehong Chung, Agnese Marcato, Eric Guiltinan, Tapan Mukerji, Yen Ting Lin, and Javier E. Santos, .Generating Multiphase Fluid Configurations in Fractures using Diffusion Models. arXiv preprint arXiv:2312.04375 (2023).
    3. Javier E. Santos, Agnese Marcato, Qinjun Kang, Mohamed Mehana, Daniel O'Malley, Hari Viswanathan, and Nicholas Lubbers.Learning a General Model of Single Phase Flow in Complex 3D Porous Media. arXiv preprint arXiv:2310.14298 (2023).
    4. Lorenzo Stratta, Merve B. Adali, Antonello Barresi, Gianluca Boccardo, Agnese Marcato, Raffaele Tuccinardi and Roberto Pisano.A diffused-interface model for the lyophilization of a packed bed of spray-frozen particles. Chemical Engineering Science 275 (2023): 118726.
    5. Agnese Marcato, Javier E. Santos, Chaoyue Liu, Gianluca Boccardo, Daniele Marchisio, and Alejandro A. Franco. Modeling the 4D discharge of lithium-ion batteries with a multiscale time-dependent deep learning framework. Energy Storage Materials 63 (2023):102927.
    6. Agnese Marcato, Gianluca Boccardo, and Daniele Marchisio.Reconciling deep learning and first-principle modelling for the investigation of transport phenomena in chemical engineering. The Canadian Journal of Chemical Engineering 101.6 (2023):3013--3018.
    7. Agnese Marcato, Javier E. Santos, Gianluca Boccardo, Hari Viswanathan, Daniele Marchisio, and Ma{\v{s}}a Prodanovi{\'c}. Prediction of local concentration fields in porous media with chemical reaction using a multi scale convolutional neural network. Chemical Engineering Journal 455 (2023): 140367.
    8. Agnese Marcato, Gianluca Boccardo, and Daniele Marchisio.From computational fluid dynamics to structure interpretation via neural networks: an application to flow and transport in porous media. Industrial \& Engineering Chemistry Research 61.24 (2022): 8530--8541.
    9. Agnese Marcato, Gianluca Boccardo, and Daniele Marchisio.A computational workflow to study particle transport and filtration in porous media: Coupling CFD and deep learning. Chemical Engineering Journal 417 (2021): 128936.
LANL Operated by the Triad National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy