Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 Anastasio Fellow 
 Fellow Program 
 
 Student Requests      
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Thursday, December 11, 2025
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Learning data-driven LES closures for SPH

Artur Toshev

Lagrangian (particle-based) methods are the dominant numerical tool for simulating complex boundaries and multiphase flows. However, while Eulerian frameworks have advanced significantly in turbulence closure modeling, such as Large Eddy Simulations (LES), Lagrangian frameworks lag behind. This presentation starts with the basics of Smoothed Particle Hydrodynamics (SPH), proceeds to address the structural reasons why turbulence modeling is inherently more cumbersome in Lagrangian settings, and finally proposes a Machine Learning (ML) solution. We first benchmark various SPH methods on fully-resolved, high-Reynolds-number 2D flows to establish a robust baseline. Subsequently, we introduce a data-driven approach for under-resolved settings, learning a turbulence closure specifically at the level of particle-particle interactions. Our results highlight the potential of ML-driven Lagrangian closures while identifying specific stability challenges inherent to this hybrid approach.