Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Thursday, May 29, 2025
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Ensemble and Mixture-of-Experts DeepONets For Operator Learning

Ramansh Sharma
University of Utah

We present a novel deep operator network (DeepONet) architecture for operator learning, the ensemble DeepONet, that allows for enriching the trunk network of a single DeepONet with multiple distinct trunk networks. This trunk enrichment allows for greater expressivity and generalization capabilities over a range of operator learning problems. We also present a spatial mixture-of-experts (MoE) DeepONet trunk network architecture that utilizes a partition-of-unity (PoU) approximation to promote spatial locality and model sparsity in the operator learning problem. We first prove that both the ensemble and PoU-MoE DeepONets are universal approximators. We then demonstrate that ensemble DeepONets containing a trunk ensemble of a standard trunk, the PoU-MoE trunk, and/or a proper orthogonal decomposition (POD) trunk can achieve 2-4x lower relative 𝓁2 errors than standard DeepONets and POD-DeepONets on both standard and challenging new operator learning problems involving partial differential equations (PDEs) in two and three dimensions. Our new PoU-MoE formulation provides a natural way to incorporate spatial locality and model sparsity into any neural network architecture, while our new ensemble DeepONet provides a powerful and general framework for incorporating basis enrichment in scientific machine learning architectures for operator learning.

Host: Syed Shah