Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Thursday, March 06, 2025
12:30 PM - 1:30 PM
T-4 Conference Room (TA-3, Bldg 524, Room 105)

Quantum Lunch

Quantum computing and persistence in Topological Data Analysis

Casper Gyurik
Pasqal

Topological Data Analysis (TDA) extracts robust features from data by analyzing the presence and persistence of topological holes. In this talk, I will discuss how a core problem in TDA—determining whether a given hole persists across different length scales—admits a potential super-polynomial quantum speedup. We establish this by showing that the problem is BQP_1-hard and contained in BQP, relying on a connection to a variant of the guided sparse Hamiltonian problem. Our approach encodes the persistence of a hole using a harmonic representative, offering new insights into the computational power of quantum algorithms for TDA.

Bio: I completed my undergraduate studies in Mathematics at the University of Amsterdam before earning a PhD in Quantum Machine Learning at Leiden University under the supervision of Vedran Dunjko. My research interests lie in learning theory, complexity theory and fault-tolerant quantum algorithms for machine learning, with a particular focus on topological data analysis. I am currently a Senior Researcher at Pasqal, a neutral-atom quantum computing company, where I work on fault-tolerant quantum algorithms.

Host: Martin Larocca, T-4/CNLS