Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, November 06, 2024
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Weak-SINDy surrogate models and their application in streaming scientific data compression

Paul Laiu
Oak Ridge National Laboratory

In recent years, several sparse-regression-based techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy), weak-SINDy, and operator regression methods, have been developed for system identification and surrogate modeling from data. These methods express the system dynamics as linear combinations of a prescribed set of basis functions/operators and compute the coefficients via solving a linear system built from data. In this talk, we will introduce the weak-SINDy method for constructing surrogate models, present the error analysis for weak-SINDy surrogate models, and discuss a new streaming data compression method based on weak-SINDy surrogates. This compression method utilizes the variational formulation in weak-SINDy to reduce the memory footprint during compression. Therefore, it is well-suited to be applied in the streaming scenario, in which storing the full data set offline is often infeasible.

Host: William T. Taitano (T-5)