Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Friday, June 07, 2024
09:30 AM - 10:15 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

INERTIAL QUANTUM SENSORS AT THE INTERFACE OF RELATIVITY

Daniel Derr
Technische Universität Darmstadt, Germany

Atom interferometry is an emerging high-precision tool for inertial sensing. Compared to optical interferometers,matter waves are manipulated by light to propagate in superposition of two trajectories through space-time. Theenclosed space-time area determines the observed interference signal and allows to measure inertial forces likethe gravitational acceleration. In addition, differential setups, for example, can be used to test the various facets ofthe Einstein equivalence principle [1] or detect gravitational waves. For the latter, the decihertz range is at the focusof current efforts and has initiated the construction of long baseline sites (such as MAGIS, AION, MIGA, ZAIGA) tocomplement conventional detection capabilities over the whole frequency range. Besides these applications, atominterferometers can be used to test physics beyond the Standard Model [2]. There are several possibilities, oneof which is ultra-light dark matter coupled to the internal degrees of freedom of atoms. These applications makeatom interferometry a testbed for the interface of relativity and quantum mechanics or the detection of ultralightdark-matter candidates [3, 4].
The talk gives an introduction into the main concepts of atom interferometry and the toolbox necessary to manipulateatoms. While we explain basic examples of atom interferometers, we also discuss current and ambitiousproposals for high-precision tests of fundamental physics and current developments in the field aiming at largescalequantum detectors of gravitational waves and dark matter.

[1] F. Di Pumpo, A. Friedrich, C. Ufrecht & E. Giese, Universality-of-clock-rates test using atom interferometry with T³scaling. Phys. Rev. D 107, 064007 (2023).
[2] A. Bott, F. Di Pumpo & E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Modelextensions. AVS Quantum Sci. 5, 044402 (2023).
[3] D. Derr & E. Giese, Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection. AVSQuantum Sci. 5, 044404 (2023).
[4] F. Di Pumpo, A. Friedrich & E. Giese, Optimal baseline exploitation in vertical dark-matter detectors based on atominterferometry. AVS Quantum Sci. 6, 014404 (2024).

Followed by Talk by Local LANL Scientist:
  • 10:15 - 10:40 Syed Shah, Nonlinear Optics with Metal Nano-particles