Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 06, 2021
12:30 PM - 1:30 PM
WebEx

Quantum Lunch

Efficient quantum algorithm for dissipative nonlinear differential equations

Jin-Peng Liu
University of Maryland

Differential equations are ubiquitous throughout mathematics, natural and social science, and engineering. There has been extensive previous work on efficient quantum algorithms for linear differential equations. However, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. We give the first quantum algorithm for dissipative nonlinear differential equations that is efficient provided the dissipation is sufficiently strong relative to the nonlinearity and the inhomogeneity. We also establish a lower bound showing that differential equations with sufficiently weak dissipation have worst-case complexity exponential in time, giving an almost tight classification of the quantum complexity of simulating nonlinear dynamics. Finally, we discuss potential applications of this approach to problems arising in biology as well as in fluid and plasma dynamics.arXiv link: https://arxiv.org/abs/2011.03185

Host: Zoe Holmes