Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, December 14, 2020
3:00 PM - 4:00 PM
WebEx

Colloquium

Optimal Bounds and Extremal Trajectories for Time Averages in Nonlinear Dynamical Systems

Charles Doering
Center for the Study of Complex Systems, University of Michigan

For any quantity of interest in a system governed by nonlinear differential equations it is natural to seek the largest (or smallest) long-time average among solution trajectories. Bounds can be proved a priori using so-called auxiliary functions, the best choice of which is a convex optimization. We show that the problems of finding extremal trajectories and optimal auxiliary functions are strongly dual and thus that this approach provides arbitrarily sharp upper bounds on maximal time averages. They also provide volumes in phase space where extremal trajectories must lie. Moreover, for polynomial systems, auxiliary functions can be constructed by semidefinite programming which we illustrate using the Lorenz and Kuramoto-Sivashinsky equations. This is joint work with Ian Tobasco and David Goluskin, part of which appears in Physics Letters A 382, 382-386 (2018).

Host: Yen Ting Lin and Angel Garcia