Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, September 18, 2019
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Arrested States in Persistent Active Matter: Gelation without Attraction

Carl Merrigan
Brandeis University

We explore phase separation and kinetic arrest in a model active colloidal system consisting of self-propelled, hard-core particles with non-convex shapes. The passive limit of the model, namely cross-shaped particles on a square lattice, exhibits a first order transition from a fluid phase to a solid phase with increasing density. Quenches into the two-phase coexistence region exhibit an aging regime. The non-convex shape of the particles eases jamming in the passive system and leads to strong inhibition of rotations of the active particles. Using numerical simulations and analytical modeling, we quantify the non-equilibrium phase behavior as a function of density and activity. If we view activity as the analog of attraction strength, the phase diagram exhibits strong similarities to that of attractive colloids, exhibiting both aging, glassy states and gel-like arrested states. We present a hydrodynamic theory of the non-equilibrium phases, which is exact in the limit of infinite persistence time of the self-propulsion direction. A remarkable feature of the theory is its ability to predict the length scales that characterize the morphology of the arrested, gel states, which agree well with our numerical simulations in the infinitely persistent limit. The predictions remain qualitatively valid for finite persistence times.

Host: Cristiano Nisoli