Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, September 16, 2019
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Detecting Bugs and Explaining Predictions of Machine Learning Models

Sameer Singh
University of California, Irvine

Machine learning is at the forefront of many recent advances in science and technology, enabled in part by the sophisticated models and algorithms that have been recently introduced. However, as a consequence of this complexity, machine learning essentially acts as a black-box as far as users are concerned, making it incredibly difficult to understand, predict, or detect bugs in their behavior. For example, determining when a machine learning model is “good enough” is challenging since held-out accuracy metrics significantly overestimate real-world performance.In this talk, I will describe our research on approaches that explain the predictions of any classifier in an interpretable and faithful manner, and automated techniques to detect bugs that can occur naturally when a model is deployed. In particular, these methods describe the relationship between the components of the input instance and the classifier’s prediction. I will cover various ways in which we summarize this relationship: as linear weights, as precise rules, and as counter-examples, and present experiments to contrast them and evaluate their utility in understanding, and debugging, black-box machine learning algorithms, on tabular, image, text, and graph completion applications. **This seminar is part of a series on Artificial Intelligence for Computational Science.

Host: Aric Hagberg