Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 Anastasio Fellow 
 
 Student Requests      
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Tuesday, May 14, 2019
10:30 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Smart Grid

Towards robustness guarantees for feedback-based optimization

Marcello Colombino
National Renewable Energy Laboratory

Feedback-based online optimization algorithms have gained traction in recent years because of their simple implementation, their ability to reject disturbances in real time, and their increased robustness to model mismatch. While the robustness properties have been observed both in simulation and experimental results, the theoretical analysis in the literature is mostly limited to nominal conditions. In this work, we propose a framework to systematically assess the robust stability of feedback-based online optimization algorithms. We leverage tools from monotone operator theory, variational inequalities and classical robust control to obtain tractable numerical tests that guarantee robust convergence properties of online algorithms in feedback with a physical system, even in the presence of disturbances and model uncertainty. The results are illustrated via an academic example and a case study of a power distribution system.

Host: Anatoly Zlotnik