Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, February 14, 2019
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Accelerated modeling of atomistic physics with machine learning

Justin Smith
T-1/CNLS

Machine learning methods are revolutionizing modern chemistry, materials physics, and molecular biology. The standard tools for atomisticsimulations are ab initio quantum mechanics (QM) methods and classical methods such as force fields (FF). Researchers have had to choose between the accuracy and generality of QM and the computational efficiency of FFs. Recent work using machine learning (ML) aims to achieve the best from both QM and FFs for the prediction of properties such as potential energy, atomic forces, atomic charges, and molecular dipoles. A grand challenge is to build an ML model that is not only accurate and fast, but also transferable, so that a single model can accurately describe diverse atomic configurations. The key to transferability is to build a sufficiently broad data set; this constrains the ML model to learn the correct physics, rather than “memorizing” a narrow set of data points. Active learning techniques provide a way to autonomously explore chemical space, allowing one to build a large and diverse data set. In this talk, I will discuss applications of active learning along with new methods for improving the physics of existing machine learning QM property predictors.

Host: David Metiver