Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Thursday, February 14, 2019
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Accelerated modeling of atomistic physics with machine learning

Justin Smith

Machine learning methods are revolutionizing modern chemistry, materials physics, and molecular biology. The standard tools for atomisticsimulations are ab initio quantum mechanics (QM) methods and classical methods such as force fields (FF). Researchers have had to choose between the accuracy and generality of QM and the computational efficiency of FFs. Recent work using machine learning (ML) aims to achieve the best from both QM and FFs for the prediction of properties such as potential energy, atomic forces, atomic charges, and molecular dipoles. A grand challenge is to build an ML model that is not only accurate and fast, but also transferable, so that a single model can accurately describe diverse atomic configurations. The key to transferability is to build a sufficiently broad data set; this constrains the ML model to learn the correct physics, rather than “memorizing” a narrow set of data points. Active learning techniques provide a way to autonomously explore chemical space, allowing one to build a large and diverse data set. In this talk, I will discuss applications of active learning along with new methods for improving the physics of existing machine learning QM property predictors.

Host: David Metiver