Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Monday, April 01, 2019
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)


Deriving lattice Boltzmann methods as coarse-grained Molecular Dynamics simulations

Alexander Wagner
North Dakota State University

Lattice Boltzmann methods have been developed as powerful tools for computational fluid dymamics. They were originally derived as an ensemble average of lattice gas simulations. By generalizing the collision operator, however, they were developed in a much more powerful tool. A key advantage for high Reynolds number simulations was achieved by allowing for an over-relaxation process, that has no equivalence in the lattice gas picture. Lattice Boltzmann methods are analysed by using kinetic theory approaches to derive the macroscopic equations, which justifies the choices made in the development of the method. This leaves a large amount of freedom in fine-tuning these methods, leading to a bewildering variety of lattice Boltzmann flavors. In this talk we show that we can derive an integer lattice gas as a coarse-graining of a Molecular Dynamics simulation. In a sense this lattice gas is the "correct" lattice gas implementation, since it will always mirror the underlying Molecular Dynamics simulation. This approach then gives a fundamental implementation of a lattice gas. We examined the fluctuating properties of this lattice gas and uncovered fluctuations that decay surprisingly slowly as we increase the length-scale of the imposed lattice.This lattice gas can also be ensemble averaged, to give a fundamentally correct lattice Boltzmann method. We have analyzed the properties of this fundamental lattice Boltzmann approach to find the equilibrium distribution, and have started to analyze the properties of the collision operator. Encouragingly the properties of the equilibrium distribution closely mimic that of standard lattice Boltzmann implementations, and the collision operator shows that over-relaxation can be fundamentally understood as a simple consequence of coarse-graining.

If you are interested in meeting with the speaker on Monday or Tuesday, please contact Amanda ( or Qinjun (

Host: Qinjun Kang