Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, February 14, 2019
12:30 PM - 1:30 PM
T-DO Conference Room (03-123-121)

Quantum Lunch

Time Evolution of an Infinite Projected Entangled Pair State

Jacek Dziarmaga
Jagiellonian University

An infinite projected entangled pair state (iPEPS) is a tensor network ansatz to represent a quantum state on an infinite 2D lattice whose accuracy is controlled by the bond dimension D. Its real, Lindbladian or imaginary time evolution can be split into small time steps. Every time step generates a new iPEPS with an enlarged bond dimension D′>D, which is approximated by an iPEPS with the original D. In Phys. Rev. B 98, 045110 (2018) an algorithm was introduced to optimize the approximate iPEPS by maximizing directly its fidelity to the one with the enlarged bond dimension D′. In this work we implement a more efficient optimization employing a local estimator of the fidelity. For imaginary time evolution of a thermal state's purification, we also consider using unitary disentangling gates acting on ancillas to reduce the required D. We test the algorithm simulating Lindbladian evolution and unitary evolution after a sudden quench of transverse field hx in the 2D quantum Ising model. Furthermore, we simulate thermal states of this model and estimate the critical temperature with good accuracy: 0.1% for hx=2.5 and 0.5% for the more challenging case of hx=2.9 close to the quantum critical point at hx=3.04438(2).

Host: Lukasz Cincio