Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, November 01, 2018
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Ab-initio calculation of electron-ion relaxation in warm dense plasmas

Jacopo Simoni
T-5/CNLS

The rapidly growing ability to form and probe warm dense matter conditions increases the demand for a quantitative predictive modeling of the fast and highly nonequilibrium processes induced in the target materials.In particular, much uncertainty remains in our understanding of the electron-ion energy relaxation timescales as illustrated by the strongdisagreements between analytical models and indicated by recent experimental investigations.This reflects both the scarcity of accurate experimental measurements as well as the difficulty of performing first-principle calculations of out-of-equilibrium processes in the warm dense matter regime.In this work we present the first ab-initio calculations of the electron-ion energy relaxation rates (a.ka. couplings) in warm dense matter.To this end, we derived a Kubo relation for the electron-ion couplings and developed methods to compute the Kubo relation with quantummolecular dynamics techniques.We discuss the results obtained for several materials of practical and academic interest (including Aluminum, Hydrogen, Copper, and Iron)across a range of conditions of temperature and density, including the solid and liquid metal conditions traversed in warm dense matterexperiments.Our approach serves as a very useful comparison with the experimental measurements and model predictions, permits an extension into densitiesand temperatures not covered by the experiments, and provides insight into the underlying physics.

Host: Arvind T. Mohan