Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, August 02, 2018
12:30 PM - 1:30 PM
T-DO Conference Room (03-123-121)

Quantum Lunch

QFlow lite: Applying Machine Learning to Quantum-Dot Experiments

Justyna Zwolak
National Institute of Standards and Technology

There are a myriad of quantum computing approaches, each having its own set of challenges to understand and effectively control their operation. For semiconductor-based methods (e.g., coupled quantum dots), control is provided by electrostatic confinement, band-gap engineering, and input voltages on nearby electrical gates. Currently, heuristics are used to set the input voltages in order to reach a stable few electron configuration. It is desirable, however, to have an automated protocol to achieve a target electronic state, especially as the size of the system is scaled up. In recent years, machine learning has emerged as a “go to” technique for image recognition and other tasks. It can give reliable results when trained on robust and comprehensive data. We show how convolutional neural networks (CNNs) can be trained to recognize the electronic state within quantum dot arrays. We find ~95% agreement between the CNN characterization and the Thomas-Fermi model predictions for nanowires. Using optimization techniques, such trained networks can be then implemented to automatically tune the device to desired dot configuration without the human intervention. I will discuss how different data (i.e., current through the quantum dots versus charge sensor readout) affects the performance of the CNN, as well as our recent findings for tuning the quantum dot device to a specific charge configuration. This machine learning approach gives opportunities for the control of quantum dot devices as they scaled to larger and larger arrays necessary for computing and fundamental applications.

Host: Yigit Subasi