Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, April 12, 2018
12:30 PM - 1:30 PM
T-DO Conference Room (03-123-121)

Quantum Lunch

Quantum Approximate Boltzmann Machines

Guillaume Verdon-Akzam
University of Waterloo

Analog quantum annealers have long been used to train a class of neural network models called Quantum Boltzmann Machines, but their future scalability and resistance to noise still remains in question. With the recent advances in circuit-model quantum computers, there are great hopes that these devices will be leveraged for machine learning applications in the near-term. In this talk we will present a classical-quantum hybrid algorithm to train Quantum Boltzmann Machines on near-term circuit model quantum computers. This algorithm relies on a method for approximate Gibbs sampling, which is achieved by variationally minimizing the free energy of the system. The free energy is minimized via the use of the Quantum Approximate Optimization Algorithm (QAOA) for energy minimization with a concurrent variational maximization of the Von Neumann entropy input into the system. By minimizing the Von Neumann free energy, we minimize an upper bound to the classical free energy, and thus achieve near-thermality. We demonstrate an implementation of our algorithm by training a Restricted Boltzmann Machine on a classically simulated noisy quantum computer. We show successful neural network training convergence for noise levels achievable in today’s quantum chips.

Host: Patrick Coles