Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Monday, January 29, 2018
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)


Accelerated and Stabilized Meshfree Methods for Extreme Events Modeling

J. S. Chen
University of California, San Diego

Meshfree methods such as the Reproducing Kernel Particle Method (RKPM) are well suited for modeling materials and solids undergoing fracture and damage processes, and nodal integration is a natural choice for this class of problems. However, nodal integration suffers from spatial instability, and the excessive material deformation and damage process could also lead to kernel instability in RKPM. This presentation introduces the recent advances in nodal integration for meshfree methods that are stable, accurate, and with optimal convergence. A variationally consistent integration (VCI) is introduced to allow correction of many low order quadrature rules to achieve optimal convergence, and stabilization techniques with implicit gradient are developed for nodal integration. Independent to the quadrature rules, a quasi-linear Reproducing Kernel approximation is constructed to address the kernel instability issue. Several RKPM shock algorithms are also formulated under the variationally consistent nodal integration framework. The application of the new RKPM formulation for fracture to damage multiscale modeling, and their applications to the modeling of extreme events, are demonstrated. The demonstration problems include the modeling of man-made disasters such as fragment-impact processes, penetration, shock and blast events, as well as simulation of natural disasters such as landslide.

Host: Duan Zhang