Lab Home | Phone | Search | ||||||||
|
||||||||
Nanophotonic architectures such as photonic crystals and metamaterials have become key players in modern photonics. They offer hitherto unprecedented capabilities combined with great versatility to control various properties of light-propagation, polarization, emission and photon statistics. They have become increasingly important for chipscale photonics. In this talk, I will present research carried out along with my colleagues in this area using photonic crystals and metamaterials at Sandia. In particular, I will provide a broad overview of our work covering three-dimensional photonic crystals operating in the visible, light emission from three-nitride nanowire two-dimensional photonic crystal arrays, metal-dielectric epsilon-near-zero metamaterials at visible wavelengths and non-resonant, broadband ultrasubwavelength light confinement structures. I will follow this overview with two of our more recent efforts. One, is on fabrication and spectroscopy of site-selective III-nitride quantum dots for quantum light sources using photo-electro-chemical etch. This approach for deterministic placement can potentially lead to quantum light sources with deterministic properties, important for quantum information processing. The other is on our efforts towards achieving topologically non-trivial photonic structures. Topological photonic structures exhibit one-way scatter-free light transport that can have important applications in optical and quantum communications. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. Host: Avadh Saxena |