Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, September 06, 2017
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

A Roadmap to Data-Driven Discovery and Rational Design in Chemical and Materials Research

Johannes Hachmann
University at Buffalo

Trial-and-error approaches are increasingly ill equipped to meeting the complex challenges involved in the discovery and design of next-generation chemistry and materials. Our work recognizes the great opportunities that are arising with the shift towards data-driven in silico research and a rational design paradigm. These approaches are poised to mitigate the inefficiencies, shortcomings, and limitations of traditional trial-and-error research. However, the notion to utilize modern data science in the chemistry context is so recent that much of the basic infrastructure has not yet been developed, or is still in its infancy. The existing tools and expertise tend to be in-house, specialized, or otherwise unavailable to the community at large. Data science is thus in practice beyond the scope and reach of most researchers in the field. Our work aims to chart new paths in this area by creating an open, general-purpose software ecosystem designed to overcoming this situation, filling the prevalent infrastructure gap, and thus making data-driven research a viable and widely accessible proposition. Our software ecosystem fuses in silico modeling (in particular computational quantum chemistry), high-throughput screening techniques, and Big Data analytics into an integrated research infrastructure. We have been developing the necessary methods, algorithms, protocols, and codes, and assembled them in three loosely connected program suites: ChemHTPS provides an automated platform for the virtual high-throughput screening of compound and material candidate libraries as well as reaction networks; ChemBDDB offers a database and data model template for the massive information volumes created by data-intensive projects; and ChemML is a machine learning and informatics toolbox for the validation, analysis, mining, and modeling of such data sets.

Host: Bryan Moore