Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 18, 2017
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Saving the Planet (and the Electric Grid) through Uncertainty Quantification and Optimization

Line Roald
T-4/CNLS

Our society depends on electricity for almost any day-to-day activity, and renewable electricity generation is key for a sustainable energy future. While solar cells, wind turbines and overhead lines are visible components of the system, the physics of the grid and the power flows from generators to customers are less tangible. In the first part of this talk, I will give an overview of the electric system and explain how renewable energy is creating both opportunities and challenges for our energy supply. If you know nothing about electricity grids, this is your chance to understand the revolution that is currently happening! The second part of the talk will be more technical, and I will present methods to quantify and manage forecast uncertainty from renewable energy. While the motivation is electric grids, the problem setting is quite general. We consider a large-scale network with non-linear, non-convex physics and uncertain inputs. Uncertainty quantification, i.e. understanding how input uncertainty affects system performance, is integrated within a stochastic optimization problem, where we explicitly limit the probability of adverse outcomes. While solving the full non-linear, stochastic optimization is currently an open problem, I will show two novel solution strategies based on (i) linearization and (ii) an iterative solution algorithm. Numerical results are presented to demonstrate the performance and scalability of the solution methods, along with a discussion of a practical implementation in the real German electricity grid.‚Äč

Host: Chris Neale