Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, June 22, 2017
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

The Power of Bidirectional Estimators: Personalized search, Markov Chain estimation and beyond

Banerjee Siddhartha
Cornell University

A fundamental problem in Markov chains is of estimating the probability of transitioning from a given starting state to a given terminal state in a fixed number of steps. This has received much attention in recent years as Markov chains form the basis of many network centrality measures, in particular, PageRank and Personalized PageRank (PPR). Standard approaches to this problem use either linear-algebraic iterative techniques (such as the power iteration) or Monte Carlo - both however have a running time which scales linearly in the size of the network. This is too slow for real-time computation on large networks - consequently, PPR, which has long been recognized as an effective measure for ranking search results, is rarely used in practice. I will present a new approach towards designing bidirectional estimators, which combines linear algebraic and random walk techniques. Our approach provides the first algorithm for PageRank estimation which has sublinear running-time guarantees in theory, and which is much faster than existing algorithms in practice. In particular, we show that it returns estimates with additive error in time in undirected networks, and in sparse directed networks. Our approach extends to general Markov chains, and more generally, to estimating a single element of a linear system.

Host: Harsha Nagarajan