Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, June 23, 2016
2:30 PM - 2:40 PM
CNLS Conference Room (TA-3, Bldg 1690)

Student Seminar

A New Approach for Anomaly Detection: The Kernelization of Khachiyan's Algorithm

Guen Grosklos
Utah State University

In its standard form, the Khachiyan algorithm efficiently identifies the ellipsoid that encloses every point in a d-dimensional dataset -- it turns out that this is a convex optimization problem. By kernelizing this algorithm, we will be able to develop a more data-adaptive anomaly detector that pays more attention to the periphery of the data while also more effectively enclosing non-Gaussian and non-ellipsoidal data. This will be compared to the kernelized RX algorithm, a well known anomaly detector commonly used for anomaly detection in hyperspectral imaging.

Host: Chris Neale