Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, May 31, 2016
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Measuring, Modeling and Predicting Fluctuations of Signal-Activated Gene Expression

Brian Munsky
Colorado State University

UPDATED TIME: Spatial, temporal and stochastic fluctuations cause genetically identical cells to exhibit wildly different behaviors. Often labeled "noise," these fluctuations are frequently considered a nuisance that compromises cellular responses, complicates modeling, and makes predictive understanding all but impossible. However, if we examine cellular fluctuations more closely and match them to discrete stochastic analyses, we discover an untapped, yet powerful information resource [1]. In this talk, I will present our collaborative endeavors to integrate single-cell experiments with precise stochastic analyses to gain new insight and quantitatively predictive understanding for Mitogen Activated Protein Kinase (MAPK) signal-activated gene regulation. I will explain how we experimentally quantify transcription dynamics at high temporal (1-minute) and spatial (1-molecule) resolutions; how we use precise computational analyses to model this data and efficiently infer biological mechanisms and parameters; how we predict and evaluate the extent to which model constraints (i.e., data) and uncertainty (i.e., model complexity) contribute to our understanding, and how we design novel experiments to rapidly and systematically improve this understanding. I will illustrate the effectiveness of our integrated approach with the identification of predictive models for MAPK induction of transcription in yeast [2] and mammalian [3] systems. Figure 1. Measuring and modeling MAPK activation of c-Fos transcriptional bursts [3]. From single-molecule mRNA measurements, we inferred a discrete stochastic model that accurately reproduces the spatial and temporal fluctuations of kinase phosphorylation and translocation, the number of active transcription sites (ATS) per cell, the number of nascent mRNA per ATS, and the number of mature mRNA per cell. References 1. B. Munsky, G. Neuert and A. van Oudenaarden, Science, 2012, 336, 6078, 183–187. 2. G. Neuert, B. Munsky, et al, Science, 2013, 339, 6119, 584-587. 3. A. Senecal, B. Munsky, et al, Cell Reports, 2014, 8,1, 75-83.