Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, May 02, 2016
10:30 AM - 11:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Scalable Control of Positive Systems

Anders Rantzer
Lund University

Classical control theory does not scale well for large systems like traffic networks, power networks and chemical reaction networks. However, many of these applications can be handled efficiently using the concept of positive system, exploiting that the set of positive states is left invariant by the dynamics. Positive systems, and the nonlinear counterpart monotone systems, are common in many branches of science and engineering. In this presentation, we will highlight several fundamental advantages of positive control systems: Verification and synthesis can be done with a complexity that scales linearly with the number of states and interconnections. Distributed controllers can be designed by convex optimization. Lyapunov functions and storage functions for nonlinear monotone systems can be built from scalar functions of the states, with dramatic simplifications as a result. In spite of a rich set of existing results, several fundamental questions in control of positive systems remain open. For example, negative feedback can easily destroy positivity of the closed loop system. On the other hand, intuition tells us that something is wrong with a traffic control system where fewer cars leads to more congestion. Hence, we need to better understand the limitations and potential of closed loop positive systems.

Host: Misha Chertkov