Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, April 20, 2016
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Algorithm development for multiphysics problems in the presence of stochastic noise

Soren Taverniers
University of California, San Diego

With exascale computing expected to become available within the next decade, computational science is focusing on ever more complex systems involving multiple physical, chemical and biological processes that take place on a wide range of spatial and/or temporal scales. Modeling such ``multiphysics'' problems in an accurate yet efficient way is a challenging endeavor, and a range of computational algorithms have been developed to deal with the various system configurations one may encounter. In the first part of my talk, I will focus on ``algorithm refinement`` hybrids that combine a fine-scale atomistic algorithm with a coarse-scale continuum description. In particular, I will demonstrate the importance of adding stochastic noise to the continuum solver when dealing with highly nonlinear systems driven by microscale fluctuations. I will also discuss a moments approach using a Gaussian closure, which allows a more direct computation of the mean and variance of the quantity of interest. In the second part, I will describe a statistical learning approach to mesoscopic model selection. Using cross-validation and regularization, this approach yields a stochastic coarse-grained description that is learned from microscale ``training'' data and is optimally predictive on unseen microscale ``test'' data. The resulting coarse-scale model may also capture the strength of fine-scale fluctuations more accurately than standard phenomenological approaches.

Host: Luis Chacon