Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, April 13, 2016
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

The mimetic finite difference method for the Landau-Lifshitz equation

Eugenia Kim
LANL T-5

The Landau-Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which pose interesting challenges in developing numerical methods. We present explicit and implicit mimetic finite difference schemes for the Landau-Lifshitz equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection to the unit sphere is used to preserve the magnitude of the magnetization. We will present rigorous convergence tests for the schemes on general meshes that includes distorted and randomized meshes. We will also present numerical simulations for the NIST standard problem #4 and the formation of the domain wall structures in a thin film.