Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, June 06, 2016
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Proton pumping and electron tunneling to power the cell

Marilyn Gunner
City College of New York, CUNY

A transmembrane proton gradient is established in cells by proton pumping through membrane embedded proteins from the N-side of the membrane, with fewer protons, to the P-side, which has more protons. The proton gradient fuels the controlled transfer of ions and substrates across the membrane needed for cell signaling and metabolism and the production of ATP, the universal energy currency for biochemical reactions, by the F0/F1 ATPase. The energy to build the gradient comes from sunlight in photosynthesis or from energy liberated by redox chemistry such as in the reduction of oxygen in cytochrome c oxidase. The reactions start with long-range electron tunneling between cofactors embedded in the proteins. Proton transfers are then coupled to the electron transfer reactions (PCET). Proton pumping involves changes in the proton affinity of buried amino acids and active site ligands. A hydrogen bond pathway containing ionizable and polar residues and waters must exist to connect proton donors and acceptors. The accessibility of proton transfer pathways to the N- and P-sides of the membrane must also change during the reaction cycle to ensure that the proton transfers do not dissipate the proton gradient. The gates that change the conductivity of proton transfer have been difficult to identify as they must be transient and may occur anywhere along the proton transfer pathways. MCCE (Multiconformation Continuum Electrostatics) has been used to access the proton affinity of key groups through the reaction cycle in cytochrome c oxidase and bacteriorhodopsin. Motifs that help groups gain and loose protons will be described. In addition, proton transfer pathways are identified through Monte Carlo sampling and the energy of intermediates are described. Funded by DOE DE-SC0001423 and NSF MCB-1519640.

Host: Angel E. Garcia