Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 24, 2016
12:00 PM - 1:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

New Perspectives on High Dimensional Inference

Madhu Advani
Stanford University

To model modern large-scale datasets, we need efficient algorithms to infer a set of P unknown model parameters from N noisy measurements. What are fundamental limits on the accuracy of parameter inference, given limited measurements, signal-to-noise ratios, prior information, and computational tractability requirements? How can we combine prior information with measurements to achieve these limits? Classical statistics gives incisive answers to these questions as the measurement density approaches infinity. However, modern 'big data' problems are often high-dimensional: have finite measurement density (N/P). This regime is important for a variety of fields and to study it we formulate and analyze high-dimensional inference as a problem in the statistical physics of quenched disorder. This analysis reveals that widely cherished Bayesian inference algorithms are suboptimal, and yields tractable, optimal algorithms to replace them.

Host: Misha Chertkov