Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, February 08, 2016
1:30 PM - 2:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Interplay between environment and geometry and directed heat flow in photosynthetic exciton transfer complexes

Yonatan Dubi
Ben-Gurion University, Israel

The striking efficiency of energy transfer in natural photosynthetic systems and the evidence of long-lived quantum coherence in biological light harvesting complexes has triggered much excitement, due to the evocative possibility that these systems - essential to practically all life on earth – use quantum mechanical effects to achieve optimal functionality. A large body of theoretical work has addressed the role of local environments in determining the transport properties of excitons in photosynthetic networks and the survival of quantum coherence in a classical environment. Nonetheless, understanding the connection between quantum coherence, exciton network geometry and energy transfer efficiency remains a challenge. Here we address this connection from the perspective of heat transfer within the exciton network. Using a non-equilibrium open quantum system approach and focusing on the Fenna-Matthews-Olson complex (the “fruit-fly” of exciton transfer), we demonstrate that finite local dephasing can be beneficial to the overall power output. The mechanism for this enhancement of power output is identified as a gentle balance between quantum and classical contributions to the local heat flow, such that the total heat flow is directed along the shortest paths and dissipation is minimized. Strongly related to the spatial network structure of the exciton transfer complex, this mechanism elucidates how energy flows in photosyntetic excitonic complexes.

Host: Kirill A Velizhanin