Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, April 05, 2016
3:30 PM - 4:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Q-Mat Seminar

Accelerated molecular dynamics methods

Arthur Voter
T-1

Many important materials processes take place on time scales that greatly exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time dynamical evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. Since the late 1990's, we have been developing a class of methods, accelerated molecular dynamics, in which the known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. Examples include metallic surface diffusion and growth, radiation damage annealing, and dynamics of nanotubes and nanoscale clusters. In this lecture, I will give an introduction to infreqent events in materials and to these accelerated molecular dynamics (AMD) methods: hyperdynamics, parallel-replica dynamics and temperature accelerated dynamics, along with some application examples. Time permitting, I will then briefly discuss some recent developments designed to make the AMD methods more general, more efficient, more scalable for large systems, and more capable of exploiting massively parallel environments.

Host: Amanda Neukirch