Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, December 21, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

An Approximate Semiclassical Method that Uses Real Valued Trajectories for Time Dependent Tunneling Calculations

Michael Herman
Tulane University

A semiclassical method will be presented that describes the time dependent tunneling of a quantum wavepacket encountering a barrier. Tunneling through barriers play a significant role in many reactions. For instance, coupled electron-proton tunneling is an important mechanism in many isomerization reactions involving organic compounds. The method described in this talk uses an approximation to the standard semiclassical stationary phase method. A discussion of semiclassical methods and the stationary phase approximation will be provided in the introduction to the talk. The approximation employed in this work leads to real valued tunneling trajectories, while most methods for this problem employ complex valued trajectories. Using only real valued trajectories will have significant advantages in applications to larger system. It is found that there are typically three of these approximate stationary phase contributions to the wave function for each point r in the transmitted region. Two of these have energies very close to the barrier top, one slightly above the barrier top and the other slightly below it. The third approximate stationary phase contribution is at a lower energy. Difficulties in obtaining accurate values for the contributions from trajectories with an energy very close to the barrier top will be considered, and the accuracy of the approximate stationary phase wave function will be discussed.

Host: Travis Peery