Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, February 29, 2016
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Numerical methods for differential equations on graphs

Michele Benzi
Emory University

We consider the numerical solution of various types of problems for differential equations posed on graphs or networks. More specifically, the talk is concerned with quantum graphs, which are metric graphs endowed with a self-adjoint differential operator (Hamiltonian) acting on functions defined on the graph's edges with suitable side conditions. We describe and analyze the use of a linear finite element method for the spatial discretization of a class of Hamiltonians. The solution of the discrete equations is achieved by means of a (non-overlapping) domain decomposition approach. For model elliptic problems and a wide class of graphs, we show that a combination of Schur complement reduction and the diagonally preconditioned conjugate gradient method results in optimal complexity. We also discuss time-dependent problems of parabolic type and eigenvalue problems if time allows. Numerical results are presented for both simple and complex graph topologies.

Host: Anatoly Zlotnik