Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, March 28, 2016
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Efficient molecular-scale energy transmission

David Sivak
Simon Fraser University

Molecular machines are protein complexes that convert between different forms of energy, and they feature prominently in essentially any major cell biological process. It seems plausible that evolution has sculpted these rapid-turnover machines to efficiently transmit energy in their natural contexts, where stochastic fluctuations are large and nonequilibrium driving forces are strong. But what are the physical limits on such nonequilibrium efficiency? And what machine designs would actually achieve these limits? Toward a systematic picture of efficient stochastic nonequilibrium energy transmission, I address two related fundamental questions in nonequilibrium statistical mechanics: How do we predict the response of molecular-scale soft-matter systems to rapid nonequilibrium driving? And how do we identify the driving that most efficiently (yet rapidly) carries such a noisy system from one state to another? These abstract theoretical considerations have immediate consequences for the design of single-molecule biophysical experiments and molecular simulations, and nontrivial yet intuitive implications for the design principles of molecular-scale energy transmission, which I illustrate through numerical calculations in simple models of bistable systems and rotary mechanochemical motors

Host: Sebastian Deffner