Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Monday, August 24, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)


CeRhIn5: A model system for correlated electrons

Filip Ronning

CeRhIn5, discovered at Los Alamos 15 years ago, is a model system for understanding strongly correlated electron systems. Correlated electron systems abound with remarkable phenomena, such as the fractional quantum Hall effect, colossal magnetoresistance, and superconductivity. These phenomena arise due to competing energy scales. Heavy fermions are a particular striking manifestation of this competition, where itinerant electrons interact with localized magnetic moments to yield new effective heavy quasiparticles with masses hundreds of times larger than a free electron. These new heavy quasiparticles have additional instabilities to magnetic, superconducting, and other exotic states, that are prototypical of many strongly correlated electron systems. Of the wealth of heavy fermion materials CeRhIn5 and its sister compounds are particularly fascinating for three principle reasons. First, their incredible purity reveals new phenomena and enables detailed experimental studies not possible in other materials. Second, it has the highest superconducting transition temperature of any heavy fermion material. Third, due to the small energy scales it is highly tunable between different ground states with only modest perturbations. In this talk, I will review the basic properties, relevant energy scales, new surprises, and open questions from the CeRhIn5 family of heavy fermion materials.

Host: Mila Adamska