Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, March 11, 2015
3:00 PM - 4:00 PM
MPA-CMMS Conference Room, TA-3, Bldg 32, Rm 134

CMS Colloquium

Quantum Spin Ice

Nic Shannon
Okinawa Institute of Science and Technology Graduate University

Spin ice, with its magnetic monopole excitations, is perhaps the outstanding example a classical, topological spin liquid. Nonetheless, the role of quantum effects in spin-ice materials remains poorly understood. This question gain fresh urgency from studies of "quantum spin-ice" materials such as Yb2Ti2O7 [1,2] and Pr2Zr2O7 [3], and recent experiments which suggest that the spin ice Dy2Ti2O7 may undergo a phase transition at very low temperature [4].

In this talk, we explore some of the new phenomena which can arise as a result of quantum fluctuations in a spin-ice material. We show how quantum tunnelling between different spin-ice configurations can convert spin-ice into a quantum spin liquid with photon-like excitations [5], review the numerical evidence that such a state exists [6-9], and discuss how it might be identified in experiment [8,9].

We also consider the nature of the quantum ground state in a realistic model of spin ice, directly motivated by Dy2Ti2O7. We identify the principles which govern magnetic order in the presence of long-range dipolar interactions, and use quantum Monte Carlo simulation to show that only a very small amount of quantum tunnelling is needed to convert these ordered states into a quantum spin liquid [10].

[1] K. Ross et al., Phys. Rev. X 1, 021002 (2012).
[2] L.-J. Chang et al., Nature Commun. 3, 992 (2012)
[3] K. Kimura et al., Nature Commun. 4, 1934 (2013)
[4] D. Pomaranski et al., Nature Phys. 9, 353 (2013).
[5] M. Hermele et al., Phys. Rev. B 69, 064404 (2004).
[6] A. Banerjee et al., Phys. Rev. Lett. 100, 047208 (2008)
[7] N. Shannon et al., Phys. Rev. Lett. 108, 067204 (2012).
[8] O. Benton et al., Phys. Rev. B 86, 075154 (2012).
[9] Y. Kato et al., arXiv:1411.1918
[10] P. McClarty et al., arXiv:1410.0451

Host: Cristian Batista