Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, May 18, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Connecting Distributed Control and Distributed Optimization in the Power Grid and General Network Systems

Na Li
Harvard University

Conventional operation of the power grid is hierarchical and divided into two vertical layers at different time scales. At the top decision-making layer, abstract decision-makers such as generator firms, utilities, and independent system operators adopt optimization approaches to determine nominal economically-efficient operating points at a slow-time scale. At the bottom dynamical-control layer, physical dynamical systems such as power plants are regulated to achieve real-time supply-demand balance while maintaining the system around the nominal operating points. With the increasing penetration of distributed energy resources, this hierarchical structure induces large economic inefficiency due to the fast and large fluctuations of the renewable generations. In this talk, I will present our work on distributed economically-efficient control, which improves the economic efficiency of the fast-time scale dynamical control. In the proposed control, the optimization computation is implicitly carried out by the physical dynamics of the control layer; in other words, the dynamics and control actions of physical plants are explicitly incorporated into the optimization algorithms. The resulting dynamical-control will automatically track the system efficient points regardless of uncertain system disturbances. I will also introduce a framework, reverse-forward engineering, which guides us the design of distributed economically-efficient control. Lastly, I will extend this framework to general network systems.

Host: Misha Chertkov