Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, January 21, 2015
10:00 AM - 11:00 AM
T-4 Conference Room 03-524-105

Seminar

Variational Integrators in Plasma Physics: Sewing the Geometric Fabric of Physics into Numerical Models

C. Leland Ellison
Princeton Plasma Physics Laboratory

The behavior exhibited by dynamical systems is strongly influenced by the presence or absence of conserved quantities. When numerically modeling these systems, obtaining the correct long-term qualitative behavior requires retaining conservation laws in the numerical update rule. One method for constructing conservative numerical models is to derive the algorithm from a variational principle discretely analogous to the one used when deriving the dynamical equations. This technique, called "variational integration," has wide-reaching implications for the central models used to describe astrophysical and laboratory plasmas. This presentation will highlight algorithmic advances in plasma physics stemming from the application of variational integrators. In the ODE context, the Lorentz, force system illustrates a conventional application of variational integrators, while the non-cannonical Hamiltonian description of guiding center test particles requires extending the variational integrator theory to degenerate Lagrangian systems. in the PDE context, variational integrators may be deployed to achieve numerically reconnectionless idea MHD and multisymplectic current-conserving particle-in-cell simulations of Maxwell-Vlasov dynamics. Overall, variational integration guides the development of new, well-behaved algorithms that are unlikely to emerge from consideration of the new differential equations alone.

Host: Jerome Daligault, T-5