Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, December 04, 2014
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Self-similar rupture of thin heated viscous fluid sheets

B.S. Tilley
Department of Mathematical Sciences, WPI

We consider the evolution and rupture dynamics of an incompressible, thin viscous planar fluid sheet subject to symmetric initial disturbances in the thermal and velocity fields. We consider the long-wave limit where deviations from the mean sheet velocity are small, but thermocapillary stresses, fluid inertia, van der Waals effects, capillarity, and heat transfer to the environment can be significant. The result is a coupled system of three equations that describe the sheet thickness, the sheet velocity, and the sheet temperature. When van der Waals effects are dominant, the sheet ruptures due to the disjoining pressures for sufficiently long-wave disturbances on a faster time-scale than convection or conduction. However in cases when disjoining pressures are small, we find a self-similar rupture process where inertia, viscous stresses, thermocapillarity, convection and conduction all balance. We quantify how solutions can transition from this similarity solution to the van-der-Waals driven self-similar solution when the thickness of the sheet becomes sufficiently thin. We discuss extensions of these results to jets.

Host: Ivan Christov