Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Monday, April 13, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)


Control of Nonlinear Delay Systems and PDEs with Fluid Applications

Miroslav Krstic
University of California, San Diego

Partial differential equations are effective in modeling physical applications such as fluid flows, thermal dynamics, flexible wings, electrochemistry in batteries, or plasmas in lasers and tokamaks. In its early period PDE control focused on replicating linear control methods (pole placement, LQG, H-infinity, etc) in infinite dimension. Over the last 15 years, a continuum version of the "backstepping" method has given rise to control design tools for nonlinear PDEs and PDEs with unknown functional coefficients. Backstepping designs now exist for each of the major PDE classes (parabolic, hyperbolic, real- and complex-valued, and of various orders in time and space). As a special case, continuum backstepping compensates delays of arbitrary length and dependence on time in general nonlinear ODE control systems. I will present a few feedback design tools and several applications, including deep oil drilling (where a large parametric uncertainty occurs) and extruders in 3D printing (where a large delay is a nonlinear function of the value of the state).

Host: Anatoly Zlotnick