Lab Home | Phone | Search | ||||||||
|
||||||||
Many biomolecular systems such as cell membranes and actin filaments are organized as complex and dynamic mesoscopic structures. However, underlying this fascinating degree of organization are molecular-scale features such as protein structural elements and/or local chemistry (e.g., protonation equilibria and nucleotide hydrolysis) that can greatly affect the mesoscopic behavior. Multiscale simulation can help to reveal these molecular features along with their coupling to the mesoscale behavior. Such results for the membrane remodeling by proteins and ATP hydrolysis in actin filaments will be presented in this talk. The lessons learned from these multiscale simulations can also help to guide in the development of novel soft materials and to predict their mesoscopic behavior via systematic coarse-graining of the molecular-scale interactions. Host: Sandrasegaram Gnanakaran |