Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, October 01, 2014
3:00 PM - 4:00 PM
MPA-CMMS Conference Room, TA-3, Bldg 32, Rm 134

CMS Colloquium

Possible high temperature quantization

Zohar Nussinov
Washington University

Quantum effects in material systems are often pronounced at low energies and become insignificant at high temperatures. As we elaborate here, this common occurrence might not, however, hold universally. We find that, perhaps counterintuitively, certain quantum effects may follow the opposite route and become progressively sharper so as to emerge in the "classical" high temperature limit. In the current work, we invoke simple elements of the WKB approximation as applied to general Hamiltonians, extend the usual kinetic theory by taking into account a possible fundamental quantum time scale, and apply ideas from transition state theory. On average, the extrapolated high temperature viscosity of general liquids may tend to a value set by the product of the particle number density n and Planck's constant h. We compare this theoretical result with experimental measurements of an ensemble of 23 metallic fluids where this seems to indeed be the case. The extrapolated high temperature viscosity of each of these liquids divided (for each respective fluid) by its value of nh veers towards a Gaussian with an ensemble average value that is close to unity up to an error of size 0.6%. We invoke similar ideas to discuss other transport properties to suggest how simple behaviors may appear including resistivity saturation and linear T resistivity may appear very naturally. Our approach suggests that minimal time lags may be present in fluid dynamics (which in the continuum follows the Navier-Stokes equation).

Host: Cristian Batista