Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, May 21, 2014
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Zero field critical fluctuations in ultrathin cobalt films

Andrew Balk
NIST / University of Maryland

Universality has successfully brought together disparate areas of science from astronomy[1] to biology[2] and to plate tectonics[3].  A well-studied[4] example is the Barkhausen effect[5], in which slowly increasing magnetic fields drive magnetic domain walls through a landscape of pinning centers giving noisy magnetic behavior, which displays spatial and temporal scale invariance over many orders of magnitude.  Similar noise has also been observed in the absence of driving fields[6, 7], but has not yet been studied in as much detail.  Here we study an ultrathin cobalt film prepared near a spin reorientation transition[8] that exhibits these zero field fluctuations.  Near this transition, domain wall pinning is greatly reduced, and thermal excitation causes domain walls to fluctuate over hundreds of nanometers.  These fluctuations are easily observable at ambient conditions with standard magneto-optical techniques.  We present data showing that our sample has a varied magnetic anisotropy landscape, and that trends between local magnetic properties and the fluctuations are correlated.  Then, we measure spatial correlations between fluctuations, finding they are uncorrelated over short time scales but over long time scales act to minimize magnetostatic energy and keep the sample demagnetized.  Finally, we perform a scaling analysis on the fluctuation areas, determining a critical exponent t. This exponent remarkably matches theoretical predications[9] and observations[10] for the field driven Barkhausen effect in a number of magnetic systems.

References:
1. M. W. Choptuik, Physical Review Letters 70 (1), 9 (1993).
2. M. Kleiber, Physiol. Rev 27 (4), 511-541 (1947).
3. K. Aki, Journal of Geophysical Research 72 (4), 1217-1231 (1967).
4. S. Zapperi, P. Cizeau, G. Durin and H. E. Stanley, Physical Review B 58 (10), 6353-6366 (1998).
5. E. P. T. Tyndall, Physical Review 24 (4), 439-451 (1924).
6. O. Portmann, A. Vaterlaus and D. Pescia, Physical review letters 96 (4), 047212 (2006).
7. N. Bergeard, J. Jamet, A. Mougin, J. Ferré, J. Gierak, E. Bourhis and R. Stamps, Physical Review B 86 (9), 094431 (2012).
8. J.-W. Lee, J.-R. Jeong, S.-C. Shin, J. Kim and S.-K. Kim, Physical Review B 66 (17), 172409 (2002).
9. A. Benassi and S. Zapperi, Physical Review B 84 (21), 214441 (2011).
10.S.-C. Shin, K.-S. Ryu, D.-H. Kim, S.-B. Choe and H. Akinaga, Journal of Magnetism and Magnetic Materials 310 (2), 2599-2603 (2007).

Host: Nikolai Sinitsyn