Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 22, 2014
12:30 PM - 2:00 PM
T-DO Conference Room

Quantum Lunch

Quantum computational universality of Affleck-Kennedy-Lieb-Tasaki states on two-dimensional lattices

Tzu-Chieh Wei
Stony Brook University

Universal quantum computation can be achieved by simply performing single-spin measurements on a highly entangled resource state, such as 2D cluster states. So far there is no complete characterization of universal resource states for measurement-based quantum computation. The family of Affleck-Kennedy-Lieb-Tasaki (AKLT) states has recently been explored in this context; for example, the spin-1 AKLT chain can be used to simulate single-qubit gate operations on a single qubit, and the spin-3/2 two-dimensional AKLT state on the honeycomb lattice can be used as a universal resource. However, it is unclear whether such universality is a coincidence for the specific state or a shared feature in all two-dimensional AKLT states. Here we consider the family of AKLT states on various two-dimensional lattices. We demonstrate that in addition to the honeycomb lattice, the spin-3/2 AKLT states on the square octagon $(4,8^2)$ and the `cross' $(4,6,12)$ lattices are also universal resources, whereas the AKLT state on the `star' $(3,12^2)$ lattice is likely not due to geometric frustration. Moreover, certain AKLT states with spin-2 and lower spin mixture are also universal.

Host: Rolando Somma somma@lanl.gov